skip to main content

CHALLENGES - Real-time nano-CHAracterization reLatEd techNloGiEeS
CHALLENGES FRAMEWORK: H2020-NMBP-TO-IND-2018-2020 FOUNDATIONS FOR TOMORROW'S INDUSTRY

Applied Materials Italy has received a grant from Europe to participate CHALLENGES project.

CHALLENGES aims to develop innovative Non-Destructive Techniques (NDTs) for reliable inline multiscale measurements down to the nanoscale and fully compatible with different factory environments. The developed metrology technologies will enable the increase of speed, resolution, sensitivity, spectral range and compatibility within different nano-related production environments, finally improving products performance, quality and reliability, with the consequent bosting of competitiveness.

The CHALLENGES' innovation will be developed exploiting the plasmonic enhancement of optical signals. It will provide a non-destructive approach based on multipurpose nano-optical techniques to enable a reliable real-time nanoscale characterization in the factory floor, using plasmonic enhanced Raman, InfraRed (IR) and Photoluminescence signals.

The project began on April 1, 2020, and will conclude on March 30, 2023. We will update this website with the project results.


CHARM - Challenging environments tolerant Smart systems for IoT
CHARM FRAMEWORK: ECSEL-2019-1-IA

Applied Materials Italy will receive a grant from Europe and the Ministry for Economic Development (MISE) to participate in CHARM. CHARM will develop condition monitoring, predictive maintenance, automation, real-time manufacturing control and optimization, and virtual prototyping system demonstrators and test them in industrial settings to tackle real industrial challenges and needs from different end-use industries. The synergies and impacts arise from similarities in technology solutions serving various applications and industrial sectors.

The CHARM Use Cases (UCs) include six different industrial sectors. The majority of them are represented by innovative, cutting-edge large enterprises that belong to their sectors' worldwide market leaders – but are still newcomers to the Electronic Components and Systems for European Leadership (ECSEL) ecosystem.

The project began on June 1, 2020, and will conclude on May 31, 2023. We will update this website with the project results.


HighLite - High-performance, low-cost modules with excellent environmental profiles for a competitive EU PV manufacturing industry
HighLite TOPIC: LC-SC3-RES-15-2019 - Increase the competitiveness of the EU PV manufacturing industry

Applied Materials Italy has received a grant from the European Union (EU)'s Horizon 2020 Programme to participate in the HighLite project under Grant Agreement no. 857793.

To achieve this, the HighLite project focuses on thin (down to 100 microns) high-efficiency crystalline silicon solar cells with passivating contacts and capitalizes on the learnings from previous large funded projects. In HighLite, a unique consortium of experienced industrial actors and leading institutes will work collectively to develop, optimize, and bring high technology readiness levels (TRL 6-7) innovative solutions at both cell and module levels. In practice, HighLite will demonstrate high-efficiency quarter size (or smaller) cut solar cells (silicon heterojunction cells with efficiency η ≥ 23.3%, interdigitated back-contact cells with η ≥ 24.3%; only 0.2% less than full-size cells) in pilot-line manufacturing.

Industrial equipment will be developed in the project for assembling these cut-cells into high-efficiency modules tailored for various distributed generation (DG) applications. More specifically, the following developments will take place: (1) building-Applied PV modules with η ≥ 22% and a carbon footprint of ≤ 250 kg-equivalent CO2/kilowatts peak (kWp,) (2) building-integrated PV modules with η ≥ 21% and improved shading tolerance, and (3) 3D-curved vehicle-integrated PV modules with η ≥ 20% and a weight ≤ 5 kg/m2.

Finally, HighLite aims to show improved cost and performance (both through indoor and outdoor demonstrations) against state-of-the-art commercially available modules. Altogether, it is expected that the solutions developed in HighLite will: (1) create more demand in Europe and worldwide for such DG products, (2) significantly improve the competitiveness of industrial actors that are part of the consortium, and (3) trigger significant investment in the EU PV industry.

The project began on October 1, 2019 and will conclude on September 30, 2022. We will update this website with the project results.


BEST4U Project – Bifacial Efficient Solar Cell Technology with 4-Terminal Architecture for "Utility Scale"

Applied Materials Italy has received a grant from the Italian Ministry of Education, University and Research (MIUR) to participate in the BEST4U project. The objective of the industrial research project is to increase the efficiency of photovoltaic modules above 25 percent and improve bifaciality. To help achieve this, the consortium proposes the concept of a 4-terminal photovoltaic module having a bifacial silicon heterojunction cell as the bottom cell and a wide bandgap semiconductor cell as the top cell.

Within the project the consortium will demonstrate a bifacial photovoltaic field optimized for ground albedo efficiency with a kilowatts hour (kWh)/kilowatts peak (kWp) productivity of ≥ 20% compared to a monofacial system.

Special thanks to MIUR and the EU for supporting the project. Please visit www.ponricerca.gov.it for further details.


BEST4U – Tecnologia per Celle Solari Bifacciali ad Alta Efficienza a 4 terminali per “Utility Scale”

L’obbiettivo del progetto BEST4U è ricerca industriale finalizzata a trovare soluzioni per incrementare l’efficienza dei moduli fotovoltaici oltre il 25%, e migliorare la bifaccialità, con cella / modulo a 4 terminali in cui la bottom cell è una cella di Si a eterogiunzione di tipo bifacciale e la top cell è una cella a semiconduttore wide band gap.

Verrà inoltre realizzato un dimostratore di campo fotovoltaico bifacciale ottimizzato per lo sfruttamento dell’albedo del terreno con una produttività in kWh / kWp maggiore del 20% rispetto al sistema monofacciale.

Questo progetto è stato reso possibile dal finanziamento del MIUR e della Comunità Europea tramite il fondo sociale europeo. Per ulteriori dettaglia visitare il sito: www.ponricerca.gov.it.