Effects of Bath contamination on electroplated solder bumps

Sam Lee and Marvin Bernt, Kalispell, MT, USA
Packaging, Plating and Cleans (PPC)
Applied Materials, Inc.

Prayudi Lianto, Science Park II, Singapore
Asia Product Development Center (APDC)
Applied Materials, Inc.

January 26, 2016
Outline

1 Introduction

2 Experiment

3 Results
 - Cu contaminated Ni bath
 - Ni contaminated SnAg bath
 - Cu contaminated SnAg bath

4 Summary/Conclusions
Chip manufacturing

Silicon Die

Substrate
Wafer Level Packaging

- Photoresist (PR)
- Under Bump Metallurgy (UBM)
- Silicon Wafer
- Ni Plating
- SnAg Plating
- Photoresist Strip
- UBM Etch
- Flux / Reflow

© Applied Materials, Inc. All Rights Reserved
Multi-metal Plating

- Common to plate multiple metals on same equipment.
 - Minimize oxidation between metal depositions
 - Increase production flexibility
 - Reduce risks due to equipment down-time

© Applied Materials, Inc. All Rights Reserved
Contamination Risks

- Drag out risks:
 1. From Cu bath into Ni bath
 2. From Ni bath into SnAg bath
 3. From Cu bath into SnAg bath

© Applied Materials, Inc. All Rights Reserved
Outline

1 Introduction
2 Experiment
3 Results
 - Cu contaminated Ni bath
 - Ni contaminated SnAg bath
 - Cu contaminated SnAg bath
4 Summary/Conclusions
Experiment Details

- Baths were contaminated with metal constituents, not full baths with additives → avoid complications with proprietary additives.
- Contamination levels: 0, 10, 100, 500 ppm.
- Test vehicles: patterned wafers 75 μm via with 50 μm resist, and blanket Au seed wafers.
Criteria

- Bath stability
- In-film contaminant incorporation
- Morphology
- Bump height non-uniformity, coplanarity, defects
- Intermetallic compounds (IMC) formation
- Shear strength
Outline

1. Introduction
2. Experiment
3. Results
 - Cu contaminated Ni bath
 - Ni contaminated SnAg bath
 - Cu contaminated SnAg bath
4. Summary/Conclusions

© Applied Materials, Inc. All Rights Reserved
Cu contamination in Ni bath

- SIMS showed Cu incorporation corresponding to contamination level.
Cu dropping out of Ni bath

- Auto-plate onto Ni pellets
- Cu oxide formation (may affect pump performance)
At 500 ppm, Cu contamination level dropped to pre-contamination level given enough recirc time.

Film morphology was restored as a result.
Cu contaminated Ni bath affected the plated Ni morphology.

Bad Ni morphology = Bad SnAg morphology

= Bump height defect (height/shape violation)

Higher Cu contamination \(\rightarrow\) more defects \(\rightarrow\) higher non-uniformity
Post reflow analysis

- After UBM etch and reflow, bumps appeared normal.
- FIB/SEM showed IMC further into solder for 500 ppm.
- Shear strength decreased and varied more for 500 ppm.
Summary: Cu contaminated Ni bath

- Cu contamination at ≥ 100 ppm affected Ni/SnAg bumps:
 - Caused dendritic Ni morphology. This in turn affected SnAg morphology, bump height non-uniformity, coplanarity, defects.
 - Increased IMC formation further into SnAg
 - Reduced shear strength

- Cu contaminant was reduced over time by:
 - Auto-plating onto Ni pellets, forming oxide sludge
 - Restored Ni morphology.
Outline

1. Introduction
2. Experiment
3. Results
 - Cu contaminated Ni bath
 - Ni contaminated SnAg bath
 - Cu contaminated SnAg bath
4. Summary/Conclusions
Ni contamination in SnAg bath

- Ni contaminant stayed in the bath, even at 500 ppm.
- Note that this was a SnAg system with inert anodes.
Effect of Ni on thin SnAg film

- SIMS showed no Ni incorporation at all contamination levels, even at 500 ppm.
- Reason was that Ni has a more negative standard electrode potential and was in much lower concentration.

Electrode Reactions

<table>
<thead>
<tr>
<th></th>
<th>E^0 [V]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Ag^+ + e^- \leftrightarrow Ag_{(s)}$</td>
<td>+0.80</td>
</tr>
<tr>
<td>$Sn^{2+} + 2e^- \leftrightarrow Sn_{(s)}$</td>
<td>-0.13</td>
</tr>
<tr>
<td>$Ni^{2+} + 2e^- \leftrightarrow Ni_{(s)}$</td>
<td>-0.25</td>
</tr>
</tbody>
</table>
Ni effect on Ni/SnAg bump heights

- Ni contamination did not affect Ni/SnAg morphology
- No effect on bump height non-uniformity, coplanarity and defect.
Post reflow analysis

- After UBM etch and reflow, bumps appeared normal.
- FIB/SEM also showed no difference.
- Shear strength varied but no trend seen.
Summary: Ni contaminated SnAg bath

- Ni was not incorporated into SnAg films at all levels
- No apparent effect on SnAg morphology, bump height non-uniformity, coplanarity, IMC formation and shear strength

Ni contamination, up to 500 ppm, does not affect Ni/SnAg bumps at all
Outline

1. Introduction
2. Experiment
3. Results
 - Cu contaminated Ni bath
 - Ni contaminated SnAg bath
 - Cu contaminated SnAg bath
4. Summary/Conclusions
Cu contamination in SnAg bath

- Cu contaminant stayed in the bath, even at 500 ppm.
- Note that this was a SnAg system with inert anodes.
Effect of Cu on thin SnAg film

- SIMS showed Cu being incorporated at ≥ 100 ppm.
- No Cu incorporated at 10 ppm.

<table>
<thead>
<tr>
<th>Electrode Reactions</th>
<th>E^o [V]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Ag}^+ + e^- \leftrightarrow \text{Ag}_{(s)}$</td>
<td>+0.80</td>
</tr>
<tr>
<td>$\text{Cu}^{2+} + 2e^- \leftrightarrow \text{Cu}_{(s)}$</td>
<td>+0.34</td>
</tr>
<tr>
<td>$\text{Sn}^{2+} + 2e^- \leftrightarrow \text{Sn}_{(s)}$</td>
<td>-0.13</td>
</tr>
</tbody>
</table>
Effect on Cu/SnAg bump heights

- No effect on bump height defect, non-uniformity and coplanarity.
- Cu contamination caused a rougher SnAg surface (small pits).
Post reflow analysis on Cu/SnAg

- After UBM etch and reflow, bumps appeared normal.
- FIB/SEM also showed no difference.
- Shear strength at 100 ppm was distinctly higher.

© Applied Materials, Inc. All Rights Reserved
Summary: Cu contaminated SnAg bath

- Cu was incorporated into SnAg films at ≥ 100 ppm.
- Cu affected bump surface roughness at 500 ppm.
- No apparent effect on SnAg morphology, bump height non-uniformity, coplanarity, IMC formation.
Outline

① Introduction

② Experiment

③ Results
 □ Cu contaminated Ni bath
 □ Ni contaminated SnAg bath
 □ Cu contaminated SnAg bath

④ Summary/Conclusions

© Applied Materials, Inc. All Rights Reserved
Conclusions:

- Cu contamination in Ni bath affected Ni and therefore SnAg morphology for Ni/SnAg bumping:
 - Almost all criteria of the SnAg layer were affected. Higher contamination led to worse result.
 - Ni bath recovered over time because of Ni “dropping” out of bath.

- Ni contamination in SnAg bath for Ni/SnAg bumping had no effect on SnAg at up to 500 ppm contamination.

- Cu contamination in SnAg bath for Cu/SnAg bumping had no effect on SnAg at contamination level <100 ppm for Cu/SnAg bumping. Little effect when level ≥ 100 ppm.
Bibliography